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a b s t r a c t

The design of fuel cells is a challenging endeavour due to the multitude of physical phenomena that
need to be simultaneously optimized in order to achieve proper fuel cell operation. Fuel cell design
is a multi-objective, multi-variable problem. In order to design fuel cells by computational design, a
mathematical formulation of the design problem needs to be developed. The problem can then be solved
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using numerical optimization algorithms and a computational fuel cell model. In the past decade, the fuel
cell community has gained momentum in the area of numerical design. In this article, research aimed at
using numerical optimization to design fuel cells and fuel cell systems is reviewed. The review discusses
the strengths, limitations, advantages, and disadvantages of optimization formulations and numerical
olid oxide fuel cell design
umerical optimization
ensitivity analysis

optimization algorithms, and insight obtained from previous studies.
© 2010 Elsevier B.V. All rights reserved.
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Nomenclature

V̇ volumetric flow rate [m3 s−1]
i current density [A cm−2]
mPt platinum loading in the catalyst layer [mg cm−2]
P power density [W cm−2]
p pressure [Pa]
Pt | C platinum to carbon weight ratio of the catalyst sup-

port
RH relative humidity [%]
T temperature [K]
ti thickness of layer i [cm]
Vcell cell voltage [V]
wcc width of the current collector [cm]
wch width of the gas inlet channel [cm]

Greek letters
�cl

N electrolyte phase volume fraction in the CL

�cl
S solid phase volume fraction in the CL

�cl
V porosity or void volume fraction in the CL

�gdl
V Porosity or void volume fraction in the GDL

�agg electrolyte volume fraction in the agglomerate
� efficiency [%]
�a gas stoichiometry at the anode
�c gas stoichiometry at the cathode
�N membrane hydration
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�N electric potential in the electrolyte phase [V]
�S electric potential in the solid phase [V]

. Introduction

Design of fuel cells is a challenging endeavor due to: (a) the
ultitude of physical phenomena that need to be simultaneously

ptimized to achieve proper fuel cell operation, (b) the multitude of
esign objectives that need to be optimized, (c) a lack of accurate
uel cell models, and, (d) the amount of computational resources
ecessary to solve the governing equations of a fuel cell. For exam-
le, in order to optimize a membrane-electrode-assembly (MEA),
he following objectives need to be achieved: (a) minimize cost,
.e. by reducing platinum loading in the electrodes, (b) maximize
he performance of the MEA (in terms of either power density
r current density for a given voltage range), (c) minimize the
ffects of contaminants in the anode and cathode, and (d) mini-
ize electrode and membrane thermal, chemical and mechanical

egradation. In order to achieve these goals, several parameters
eed to be optimized, such as: (a) the geometry of the gas diffu-
ion layer (GDL), micro-porous layer (MPL), catalyst layer (CL) and
roton exchange membrane (PEM), and (b) the composition and
icrostructure of GDL, MPL, CL and PEM, e.g., porosity, platinum

oading, and ionomer loading. There is a trade-off between objec-
ives; therefore, all objectives need to be optimized simultaneously.
or example, minimizing platinum loading will reduce cost but
t will most likely also reduce fuel cell performance. Similarly,
here is a trade-off between the design variables, e.g., increasing
L porosity will lead to improved mass transport but it will also
esult in a decrease in charge transport due to a reduction in either
on or electron conductive materials. As a result of these trade-
ffs, all design parameters and objectives need to be optimized

imultaneously.

Due to the large number of design objectives and design
ariables, trial-and-error approaches to fuel cell design are time-
onsuming and, in most cases, lead to a sub-optimal design. The
ain reason for obtaining sub-optimal designs is that the number
ources 196 (2011) 3690–3704 3691

of possible designs that need to be evaluated in order to obtain
the optimal solution increases extremely quickly with the number
of design variables. As an example, for a design with ten design
variables and six possibilities per design variable, the number of
possible designs is 106. It is obvious that it is impossible to manually
evaluate all designs. Therefore, design studies based on trial-and-
error approaches are usually limited to one objective and a handful
of design variables. For example, experimental studies in electrode
optimization and flow channel design have been mainly concerned
with optimizing performance (i.e. current density), while ignor-
ing any of the other design objectives such as cost, pressure drop
in the channel, and robustness to contaminants and degradation.
Experimental studies aimed at obtaining the electrode structure
that achieves maximum performance have only studied the effect
of either one design parameter (e.g., Nafion loading [1–4] or plat-
inum loading [5]), or at most two design parameters (e.g., platinum
and Nafion loading [6]). The result is that the coupling between
all design parameters is not properly captured and a sub-optimal
design is obtained.

With the proliferation of fuel cell analysis computer models, it is
now possible to use computer models to design fuel cells. The next
logical step is to automate the design process. Design problems
with a large number of design objectives and variables are com-
mon in structural, aerospace, and automotive engineering. In these
industries, numerical optimization is commonly used to solve these
problems [7]. Numerical optimization has been a very active area
of research since the 1960s, and many optimization formulations
[8] and optimization algorithms have appeared in the literature
[7,9,10]. Computational optimization has been used in many appli-
cations, for example in obtaining the optimal shape of airfoils [11],
in simultaneously optimizing the structure and shape of aircraft
wings [12], and in finding the optimal topology of automotive parts
and micro-electro-mechanical systems (MEMS) [13].

Computational optimization is based on coupling a mathe-
matical algorithm with a computational analysis tool in order to
efficiently search for an optimal design. Using the optimization
algorithm, only a few designs need to be evaluated, thereby sub-
stantially reducing the necessary computational time to achieve an
optimal design. Further, in many cases, the optimization process
can guarantee that the design is an optimal one. Using compu-
tational optimization liberates engineers from the tedious task of
performing parameteric studies in order to improve a new design,
thereby enabling them to concentrate on developing innovative
designs instead of fine-tuning existing ones.

In the area of fuel cell design, the application of numerical
optimization is scarce. A total of approximately 49 articles have
appeared in the literature in the areas of: (a) flow field design, (b)
electrode design, (c) operating conditions optimization and, (d) fuel
cell assembly optimization. All these publications have appeared
within the past decade, with most in the past 5 years, indicating
the growing interest in this field of research.

This article reviews only previous work on fuel cell and fuel cell
system design using numerical optimization. Only stand-alone fuel
cell system optimization will be reviewed; hybrid power systems
where the focus is not in fuel cell design are not included. Studies in
the area of computational fuel cell design that are based on param-
eter estimation, such as references [14–17], are also not included.
The article is structured as follows. First, a review of optimiza-
tion algorithms is presented in Section 2. The review is focused
on algorithms to solve single-objective and multi-objective con-
strained optimization problems because these are the problems

most commonly encountered in fuel cell design. Section 3 presents
the different optimization approaches that have been used in the
literature to optimize channel geometry, electrode geometry and
composition, operating conditions of single cells and the design of
fuel cell stacks. Section 4 describes research on design and opti-
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ization of fuel cell system. Section 5 provides conclusions and
ecommendations based on previous work.

. Numerical optimization

.1. Problem formulation

Fuel cell design and optimization usually involves solving a
ulti-objective, nonlinear constrained optimization problem of the

orm

minimize f (x) (a)
w.r.t. xk for k = 1, 2, . . . , n (b)
subject to : hi(x) = 0 for i = 1, 2, . . . , p (c)

gj(x) ≤ 0 for j = 1, 2, . . . , q (d)
xL ≤ x ≤ xU (e)

(1)

here the function to be minimized, f(x), is known as the objective
unction. In fuel cell design, there are several objectives that should
e optimized, such as cost, performance at several operating points,
nd durability. The objective function is one or a combination of
hese objectives that depends on a set of variables, x, which can take
rbitrary values. These variables are known as the design variables.
esign variables in fuel cell design are parameters such as platinum

oading, amount of ionomer in the catalyst layer and the height and
idth of a gas channel. The design variables are usually bounded.

n Eq. (1), xL and xU represent the vector of lower and upper bounds
or the design variables. The aim of the optimization algorithm is
o obtain the value of the design parameters, x, that makes the
bjective function minimal. This point is known as the solution of
he optimization problem and is represented by x∗. It is important to
otice that minimizing a function, f(x), is equivalent to maximizing
he function m(x) = − f(x). Most engineering designs also need to
atisfy several physical and manufacturing constraints, therefore
esign constraints are also included in the design problem such as
maximum pressure drop in the channel and a minimum porosity.

n Eq. (1), hi(x) = 0fori = 1, 2, . . ., p are the equality constraints and
j(x) ≤ 0forj = 1, 2, . . ., q are the inequality constraints. It is assumed
hat functions f(x), h(x), and g(x) are nonlinear, continuous and
ave continuous first and second order derivatives.

.2. Nonlinear constraint optimization algorithms

Nonlinear constrained optimization problems involve the
earch for a minimum of a nonlinear objective function subject to
set of nonlinear constraints. It is common for a nonlinear opti-
ization problem to have multiple extrema. Due to this difficulty,

wo different approaches have emerged in the area of nonlinear
onstraint optimization: local methods and global methods. Local
ethods aim to obtain a local minimum, and they cannot guarantee

hat the minimum obtained is the absolute minimum. These meth-
ds are usually first-order methods, i.e. they require information
bout the gradient of the objective function and the constraints.
n the other hand, global methods aim to obtain the absolute min-

mum of the function. They do not need any information about the
radient, and they are mostly based on stochastic procedures.

Local constrained methods can be classified into sequential
ethods and transformation-based methods. Sequential meth-

ds aim to solve the nonlinear constrained problem by iteratively
olving a simpler constrained optimization problem. The most
ommonly used local sequential methods are: the method of
easible directions (MFD) and modified method of feasible direc-

ions (MMFD) [7,10,18], sequential linear programming (SLP)
7,10,19,20], sequential quadratic programming (SQP) [21,22], and
urrogate-based optimization methods [23–27].

Local transformation-based methods transform the original
onlinear optimization problem into an unconstrained optimiza-
ources 196 (2011) 3690–3704

tion problem by adding a penalty function to the objective function.
Once the constrained problem has been transformed into an uncon-
strained problem, any unconstrained optimization algorithm can
be used to solve the transformed problem. The most commonly
used local transformation-based methods are: penalty methods
[7,10] and augmented Lagrangian methods [7,10,18]. All penalty
methods have a main drawback; due to the introduced penalty,
the objective function becomes highly nonlinear and this makes it
difficult for the unconstrained methods to obtain the minimum.

It is important to note that, although local methods do not aim
for the global optima, they can be used to obtain said global optima.
Several methods can be used to continue searching once a local
minimum has been obtained, thereby enabling the identification
of all local minima. Some of these methods, based on a stochastic
approach, are: random multi-start methods [28,29] and ant colony
searches [30]. Some methods use a deterministic approach to
find the global optimum. For example, the local-minimum penalty
method [31] includes a penalty to the objective function if the algo-
rithm tends to go to an already known local minima.

Global methods can be classified into two groups: direct or
transformation-based methods. Direct methods include, for exam-
ple, covering methods [32] and pure random searches. The main
drawback of direct methods is that they require a large number of
function evaluations and are therefore computationally expensive.

Global transformation-based methods first transform the
original problem into an unconstrained problem. Then, global
unconstrained techniques are used to obtain the global min-
ima. Commonly used unconstrained global methods are: genetic
algorithms (GA) [33], evolutionary algorithms [34] and simulated
annealing [35]. These methods have the same drawback as the
global direct methods; they require a large number of objective
function evaluations. As a result, the computational requirements
for these methods become prohibitive when the evaluation of the
objective function and constraints is time consuming.

2.3. Multi-objective optimization algorithms

In fuel cell design, the designer would like to optimize sev-
eral coupled design objectives such as the minimization of cost,
maximization of performance and the maximization of dura-
bility. In order to optimize several objectives simultaneously, a
multi-objective optimization problem needs to be formulated. A
mathematical formulation of such a problem is given by

minimize J(x) = [ J1, J2, . . . , Jn]T

w.r.t. xk for k = 1, 2, . . . , n
subject to : hi(x) = 0 for i = 1, 2, . . . , p

gj(x) ≤ 0 for j = 1, 2, . . . , q
xL ≤ x ≤ xU

(2)

where Ji is one of the objectives to be minimized, J(x) is the vector
of objectives and the other constraints have the same meaning as
in Eq. (1).

The scalar concept of optimality does not apply directly to the
multi-objective problem because there are more than one optimal
solutions depending on the importance of each objective. A use-
ful notion is that of the Pareto optimality. A design, x, is a Pareto
optimal solution for the problem (2), if all other feasible designs
have a higher value for at least one of the objective functions Ji,
or else have the same value for all objectives [36–38]. Using the
definition of Pareto optimality, there are many Pareto optimal solu-

tions, x∗. Since all Pareto optimal solutions are good solutions,
the most appropriate solution will depend only upon the trade-
offs between objectives; therefore, it is the responsibility of the
designer to choose the most appropriate solution. The Pareto front
is a set that contains the objectives of all optimal solutions. It is
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ometimes desirable to obtain the complete set of Pareto opti-
al solutions, from which the designer may then choose the most

ppropriate design.
There are a variety of methods for solving multi-objective

roblems and for obtaining the set of Pareto optimal solutions
36,38–42]. One of the most widely used methods for multi-
bjective optimization is the weighted sum method [40]. In this
ethod, the multiple objectives are transformed into a single

bjective function by multiplying each objective by a weighting
actor and summing up all contributions. Each single set of weights
etermines one particular Pareto optimal solution. The weighted
um method is easy to implement and it can easily be under-
tood; however, it has two drawbacks: (1) a uniform spread of
eight parameters rarely produces a uniform spread of points on

he Pareto set; (2) non-convex parts of the Pareto set cannot be
btained [43].

In the literature, only a handful of articles have addressed the
ulti-objective nature of fuel cell design. As an example, Secanell

t al. [44] optimized both performance and platinum loading. To
btain the Pareto set they used a weighted sum method. The
ethod was shown to provide good results. Chen et al. [45] optimiz-

ng fuel cell operating conditions in order to minimize the capital
nd operating costs of the fuel cell. The multi-objective function
ncluded three objectives: (a) minimize the annualized cost of the
ell, (b) minimize the fuel costs, and (c) maximize the credits for
he exhaust hydrogen.

.4. Sensitivity analysis

Sensitivity analysis is concerned with obtaining the change of
certain output variable with respect to an input variable, i.e.

radients or sensitivities. In the case of optimization, sensitivity
nalysis is used to obtain the derivatives of the objective function
nd constraints with respect to the design variables. These values
re needed by the gradient based optimization algorithms dis-
ussed in Section 2.2. In some cases, gradient based methods might
lso need the second derivatives, i.e. the Hessians. These values
an be computed analytically or they can be approximated. Quasi-
ewton methods, such as the Broyden–Fletcher–Goldfarb–Shanno

BFGS) method, use an approximation of the Hessians to solve the
ptimization problem.

In the literature, several methods have been suggested to com-
ute the gradients of physical properties with respect to the
esign variables. This include: (a) finite difference differenciation,
b) complex-step differentiation, (c) automatic differentiation, and
d) analytical differentiation. Finite difference differentiation uses

Taylor series expansion of a function around a point, x0, to
btain an approximation of the gradient. First-order finite differ-
nce differentiation needs n + 1 function evaluations to compute
he gradient of a function, with n being the number of indepen-
ent variables. First-order forward difference is easy to implement
nd is computationally more efficient than complex-step differen-
iation and automatic differentiation methods [46,47]. However,
orward-difference is also the most inaccurate of all the methods
escribed above and it is subject to the step-size dilemma, i.e. the
rror is proportional to the step size but it is very difficult to find
he appropriate step size due to: (a) the first order approximation,
nd (b) numerical errors for small step sizes [46,47].

Complex-differentiation solves the step-size dilemma encoun-
ered in the finite-difference method by using a complex step to
ompute the gradients [46,48,49]. The approximation is second

rder. The number of function evaluations necessary to obtain the
radient is still n + 1 where n is the number of independent variables
f the function. In order to obtain the gradients using complex-step
ifferentiation, the source code of the analysis program has to be
hanged so that all the real variables become complex variables.
ources 196 (2011) 3690–3704 3693

Automatic differentiation (AD) is based on successive applica-
tion of the chain rule to each operation performed in the analysis
computer code [50,51]. Since the structure of a computer code is
composed of a successive set of arithmetic operations used to com-
pute the value of a function, successive application of the chain rule
to each one of the operations in the code will result in the exact (to
machine precision) desired derivatives. In order to transform a code
into a forward or reverse automatic differentiation code, there are
several programs that precompile the original code and transform
it into an AD code. Some of the codes that can be used to transform
either FORTRAN or C++ source codes to AD codes are: ADIFOR, IMAS,
Tapenade, OPTIMA90 and the Trilinos/Sacado AD library.

Finally, analytical differentiation consists of deriving the ana-
lytical expressions for the sensitivities and introducing them to the
original analysis code. These methods are the most efficient and
accurate; however, they are also the most difficult and time con-
suming to implement. There are two methods used to compute
the sensitivities analytically: direct methods and adjoint methods.
Using the direct method, the computations necessary to obtain the
gradients of M functions with respect to N design variables is the
solution of N linear systems of equations of similar size as the orig-
inal problem. The adjoint method eliminates the dependence of
the gradient computations on the number of design variables [52].
Therefore, the computations necessary to obtain the gradient of M
functions with respect to N design variables is the solution of M
linear systems of equations of similar size as the original problem.
For fuel cell design problems involving a large number of design
variables and a small number of objectives and constraints, such
as for flow channel shape optimization, the adjoint method is the
most effective method for performing sensitivity analysis.

Developments in sensitivity analysis for fuel cell applications
are scarce. Sensitivity analysis to perform optimization using
gradient-based methods has mainly been based on finite difference
differentiation [53–64]. However, forward-difference differentia-
tion has the two major drawbacks described previously. In the fuel
cell literature, only three groups have developed an alternative to
the numerical sensitivities. Kapadia et al. [65,66] developed a three-
dimensional numerical model of a solid oxide fuel cell capable of
obtaining the sensitivities of several objectives with respect to the
material properties of the solid oxide fuel cell. To compute the sen-
sitivities, both an adjoint and direct method are implement. Carnes
and Djilali [67] developed a one-dimensional fuel cell model capa-
ble of obtaining the analytical sensitivity of the current density with
respect to several physical parameters using the direct method.
Secanell et al. [68–70,44] developed a two-dimensional numerical
model of a polymer electrolyte fuel cell that is capable of obtaining
the analytical sensitivities of the current density using the direct
method.

3. Fuel cell design and optimization

The following section will review the published articles in single
cell and stack design for fuel cells. Much of the modeling and opti-
mization efforts in this area are concentrated on low-temperature
fuel cells. Section 3.1 includes studies using polymer electrolyte (or
proton-exchange) membrane fuel cells (PEFCs), both hydrogen or
direct methanol fuel cells (DMFC). The limited number of optimiza-
tion studies using high-temperature fuel cells, namely solid oxide
fuel cells (SOFC), will be discussed in Section 3.2
3.1. Low-temperature fuel cells

Efforts on computational design and optimization of PEFCs have
been focused on two areas: (a) design of flow fields, and (b) design of
electrodes. Usually, computational design studies that have focused
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n the flow field have used a very simple model for the electrode in
rder to reduce the computational expense of the analysis program.
imilarly, studies that have focused on optimizing the electrode
tructure and composition have usually neglected the convective
ransport in the channel and porous media.

.1.1. Flow field optimization
The first research efforts in the area of fuel cell flow field design

nd optimization were published in 2004. Grujicic et al. presented
everal articles [54–56] concerning the optimization of the geo-
etric parameters in the cathode of an interdigitated fuel cell. In

ef. [54], the authors optimized the current density of an inter-
igitated fuel cell at a cell voltage of 0.7 V. The design variables
ere: (a) the inlet cathode oxygen pressure (pin

c ); (b) the cath-
de GDL thickness (tGDL,c); (c) the width of the gas channel plus
urrent collector (wc = wcc,c + wch,c), and (d) the fraction of the
urrent collector (�c = wcc,c/(wcc,c + wch,c)). The model used to
erform the optimization was a two-dimensional model of an MEA
including GDL, PEM and a zero-thickness CL model). The model
sed Fick’s law and Darcy’s law to account for transport of fuel and
eactants and Ohm’s law for the transport of electrons through the
DL. The PEM model only accounted for the transport of charge
nd used a constant membrane conductivity. The governing equa-
ions were implemented and solved using COMSOL Multiphysics.
he optimization problem of maximizing the current density sub-
ect to bounds for all design variables was solved using fmincon,
he sequential quadratic programming algorithm in MATLAB. All
esign variables reach the bounds in the optimal design. Inlet pres-
ure and current collector width reach their respective upper limits
hile the cathode thickness and fraction of the current collec-

or reach the lower limits. Therefore, no trade-off is observed in
his optimization problem. In addition to obtaining the optimal
esign, Grujicic et al. also performed a detailed design robustness
nalysis with respect to: (a) reference oxygen concentration, (b)
athode/membrane equilibrium potential, (c) active layer thick-
ess, (d) gas diffusive coefficient inside the agglomerate, and (e)
athodic exchange current density. It was noted that the optimal
esign is unaffected by a ±10% variation in these parameters.

In Ref. [55], Grujicic et al. again aim at optimizing the geometry
f the gas distributors in order to achieve a maximum current den-
ity. In this case, a three-dimensional model of the cathode of an
nterdigitated fuel cell is used in order to obtain the optimal value
or the following design variables: (a) the GDL thickness (tGDL,c);
b) the height of the interdigitated air distributor channel (hch,c);
nd, (c) the width of the air distributor channel (wch,c). The three-
imensional isothermal, single-phase model used for optimization

ncludes the cathode gas distribution channels and the GDL. At the
DL–CL interface, the reactions are accounted for via a flux bound-
ry condition. The governing equations for the channels and cath-
de electrode are a mass continuity equation, the Navier–Stokes
quation and the Maxwell–Stefan equation for oxygen and water.
o justification is given for using the Navier–Stokes equation with-
ut any correction such as the Darcy damping force in the cathode
lectrode, a porous media. The optimization results show that the
hannel height and width reach their upper bounds. The optimal
athode GDL thickness does not reach the bounds and the optimal
alue is 37 �m. Comparing this result to their previous publication
54], the thickness does not reach the bounds because the bounds
ave been reduced substantially from the previous study.

In Ref. [56], the current density of an interdigitated flow field fuel
ell is again optimized with respect to the same design variables as

n Grujicic et al.’s previous work [54] with the exception of the total
ressure which has been removed. The fuel cell model used in this
ase is similar to the model used to simulate the cathode in ref-
rence [54]; however, the cathode model is extended to include a
ass balance equation for water vapour and an equation for satu-
ources 196 (2011) 3690–3704

ration. The optimal solution has a GDL thickness of 25 �m and the
width of the gas channel and the fraction of the current collector
both reach its lower bound. The contrasting results between Refs.
[54] and [56], where the current collector width reaches its upper
and lower bound, respectively, are not discussed but are likely due
to the effect of saturation.

More recently, Lin et al. [57] also analyzed the optimal chan-
nel width ratio using numerical optimization. They optimized the
power density of a PEMFC cathode electrode at an overpotential
of 0.25 V (cell voltage is not reported) using an in-house PEMFC
electrode model and a gradient-based optimization algorithm (sim-
plified conjugate gradient method; SCGM). The optimization design
variables are: (a) the CL porosity (�CL

V ); (b) GDL porosity (�GDL
V ), and

(c) the gas channel width ratio (� = wch/wcc where wch is the width
of the channel and wcc is the width of the current collector). The
fuel cell electrode model solved the transport of oxygen through
the CL and GDL and the transport of electrons through the CL, GDL
and bipolar plate. The electrolyte potential was not considered and
instead a fixed overpotential was used to compute the reaction
rate of the electrochemical reaction using a Tafel equation. No con-
straints were used in the optimization process. The results showed
an optimal channel width ratio of 0.54 and GDL and CL porosites of
0.6 and 0.3 respectively.

Cheng et al. [58] integrated a commercial CFD package (CFD-
ACE+) with a gradient-based optimization algorithm (simplified
conjugate gradient method; SCGM). The sensitivity analysis was
performed numerically, most likely using forward differences. The
objective is to maximize power density at a cell voltage of 0.7 V.
Since voltage is fixed, this is equivalent to optimizing the cell cur-
rent density at 0.7 V. The design variables are: (a) the gas channel
width fraction (�); (b) the gas channel height (hch); and, (c) GDL
thickness (tGDL). The solution of the optimization problem took 30
iterations and 60 h of CPU time in a personal computer. The objec-
tive function used is the inverse of the power density, so a minimum
can be calculated by the optimization algorithm. It is unclear why
this approach is taken, as minimizing the negative current has the
same effect without introducing further nonlinearity to the design
space. It may be possible to reduce the solution time by simplifying
the optimization formulation and gradient calculations.

In 2009, Huang et al. [59,60] and Wang et al. [61] presented the
first studies aimed at changing the geometry of the channel in the
direction of the flow. These articles provide the first real attempt
at flow field shape design optimization. Huang and Lin [59] solved
an inverse problem in order to redesign the channel height of the
outlet section of a triple serpentine PEMFC in three-dimensions. The
standard PEMFC module provided by CFD-ACE+ is used to model
the transport phenomena inside the fuel cell. The channel section
is parameterized using a second order B-spline with three control
points, which are used as design parameters. The objective of the
study is to redesign the channel height in order to increase the
current density under the redesigned section by 15% with respect
of the original design at a cell voltage of 0.3V. The optimization
problem can be stated as

Minimize J(Bj) =
M∑

i=1

(Ic,i(Bj) − Id,i)
2

w.r.t. Bj

(3)

where i = 1, . . ., M is the number of points at which the current
density is evaluated, j = 1, . . ., 3 is the number of control points,
Ic,i(Bj) is the current density of the redesigned cell at point i and Id,i

is the desired current density at point i. Two cases are studied: (a)
redesign of the last 20 mm of the channel outlet, and (b) redesign
of the last 40 mm of the channel outlet. The increase in current
density results in an increase in the cell current density of 1.4% and
3.3% for cases (a) and (b), respectively. The optimization problem is
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olved using the Levenberg–Marquardt method, a gradient-based
inimization method. The sensitivities of the objective function

re computed as follows:

dJ

dB
=

M∑
i=1

P∑
j=1

2(Ic,i(Bj) − Id,i)
dIc,i

dBj
(4)

here dIc,i/dBj is computed by numerical differentiation. To com-
ute dIc,i/dBj, each design variable (control point) is perturbed and
new CFD analysis is performed. Therefore, the computation of the
erivatives requires one additional CFD computation per design
ariable. The CPU time on an Intel Dual-Core 1.8 GHz processor
s about 109 h and 65 h for cases (a) and (b), respectively, and
s obtained after only 5 and 3 iterations. The large amount of
omputational time illustrates the need for an efficient method to
ompute the sensitivities of the objective function, e.g. analytical
ensitivities.

The computational optimization results in Ref. [59] were val-
dated experimentally. The results show that performance is
ncreased as predicted by the new design. At 0.3 V, the total den-
ity is increased from 55.00 A to 55.75 A and 56.76 A for cases (a)
nd (b), respectively. This improvement illustrates the advantage
f using numerical optimization. It is important to notice that fur-
her improvements are possible. In this study, the target was to
mprove the local current density by 15% in the redesigned sec-
ions. The problem could be reformulated to maximize the current
ensity in the redesigned section leading to the maximum possible
erformance for a fuel cell with a redesigned fuel cell outlet.

In Ref. [60], Huang et al. applied the inverse design technique
escribed above to redesign a section of a single straight channel.
hree cases are studied in which the channel length (as measured
rom the outlet) are redesigned: (a) 20 mm, (b) 15 mm, and (c)
0 mm. The objective was to increase the current density at the
edesigned section of the channel by either 20% or 30% at a cell
oltage of either 0.4 V or 0.7 V. Only for a cell voltage of 0.4 V could
30% improvement be achieved. The design variables are four con-

rol points of a B-spline that controls the height of the channel. The
EMFC model used is the same as that used in [59], i.e. the standard
EMFC module provided by CFD-ACE+. The optimization results
re obtained after 3–4 days of CPU time. The optimal geometry
f the redesigned section is similar to that presented for the triple-
erpentine channel in [59]. The redesigned section of the channel
hows a sudden drop in height and then a near-constant height is
aintained. The sudden reduction in height helps to redirect some

f the flow in the channel towards the GDL, removing excess water
nd increasing the oxygen concentration. Unfortunately, the new
esign presents a sharp increase in pressure drop. Even though this

s not discussed in the article, the increased presure drop could lead
o an increase in the sizing of the air compressor, thereby reducing
ystem efficiency and increasing the cost of the system.

Wang et al. [61] maximized the power density, at a voltage of
.4 V, of a PEMFC with a single serpentine flow field with four bends
y changing the height of the bends and width of each section of the
erpentine channel. The geometry of the anode and cathode flow
elds is considered to be the same. Eight design variables were used,
ve design variables describing the height of the serpentine bends
nd three describing the width of the serpentine channel sections.
he width of the serpentine channel ribs was maintained constant.
he optimization problem was solved using the simplified conju-
ate gradient method (SCGM). After approximately 35 iterations,
he optimal solution was obtained. CPU time to obtain the solution

as not reported. The optimal design achieves an increase in power
ensity of 22.5% with respect to the base design (a serpentine chan-
el with uniform cross section channels of 1 mm × 1 mm channels).
he optimal flow field has a converging inlet section (Hin = 1 mm
nd Hout = 0.25 mm) and a diverging outlet section in the serpentine
ources 196 (2011) 3690–3704 3695

channel (Hin = 0.1 mm and Hout = 0.69 mm). The width of the outlet
section is also reduced with respect to the base design (0.44 mm vs.
1 mm), thereby reducing the cross-sectional area and increasing the
speed of the fluid in this zone. The sections of the serpentine chan-
nel in between the inlet and the outlet sections present a reduced
height with respect to the base case (0.35–0.1 mm vs. 1 mm) and a
variable width towards the outlet (1.19, 1.52, and 0.85 mm). The
optimal design increases performance at the expense of a large
increase in pressure drop in the channel. The trade-offs between
increased performance and increased pressure drop are not dis-
cussed. An increase in pressure drop will result in an increase of
the power demands to the auxiliary systems and might result in a
reduction of the power density of the complete fuel cell system.

Optimization of the pressure drop in gas channels was the moti-
vation of the recent study by Zhang et al [71]. Serpentine channels
provide a more uniform distribution of reactants than parallel chan-
nels, but they usually result in larger pressure drops. Zhang et al.
[71] used numerical optimization in order to design an 11-channel
Z-type bipolar plate that has a uniform flow distribution. In order
to predict flow distribution, i.e. the velocity in the manifold channel
and individual channels, the research group developed an analyt-
ical model to calculate the flow distribution in parallel channels.
The model is based on using an analogy between fluid flow in the
channels and current in electrical circuits. The analytical model
was validated by comparison of the analytical results with pre-
dictions from CFD-ACE+ and good agreement was observed. The
design problem was stated as obtaining the width of the channels
and land area for each one of the channels such that the following
objective is minimized

f (x) = 1
Nv̄

√√√√ N∑
i=1

(vi − v̄)2 (5)

where vi is the mean velocity of the reactants in channel i, v̄ is the
mean velocity in the plate and N is the number of channels (11 in
the article). The objective is the weighted, least-square difference
between the average bipolar plate velocity and the individual chan-
nels such that if the value is zero, all channels would have the same
velocity. The design variables are constrained to practical manufac-
turing sizes (i.e., the channels and ribs should be larger than 0.8 mm
and smaller than 1.5 mm) and symmetry is maintained in the bipo-
lar plates by equality constraints for what Zhang et al. [71] cite
as “engineering purposes.” In the opinion of the authors, equality
constraints lead to optimization problems that are difficult to solve;
therefore, they should be eliminated when possible. An alternative
approach would have been to impose the constraints in the analy-
sis part of the problem instead of in the optimization formulation.
The obtained design contains channels with variable width with the
smaller channels near the inlet/outlet and the largest channel in the
center of the plate. The land widths remain constant at 0.8 mm, but
Zhang et al. do not discuss the reason for this result. CFD contour
plots of the flow velocities are shown for the initial and optimal
bipolar plate designs. The final design results in a much improved
flow distribution with the velocity inside the channels being almost
uniform.

Xing et al. [62] optimized the current density of an air-breathing
fuel cell at a cell voltage of 0.7 V and 0.4 V. Two optimization prob-
lems are solved with one design variable each. The design variable
is either: (a) the cathode open ratio or, (b) anode channel ratio. The
optimization problem is solved using the SQP algorithm in MATLAB.

With only one design variable, it is difficult to understand why an
optimization algorithm was used to obtain the optimal design since
a parametric study would have been sufficient. Numerical opti-
mization is only advantageous as the number of design parameters
increases because all parameters are modified at once.
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Most recently Jang et al. [72] aimed to maximize the per-
ormance of a single cell with a 1 cm2 active area. Their model
ntroduces baffles in the channel, i.e. an obstruction is built into the
ipolar plate in order to force air and hydrogen in the cathode and
node, respectively. The model is solved with CFD-ACE+ and the
CGM is used to optimize the position of the baffles in each chan-
el for maximum performance. Following a similar optimization

ormulation to Cheng et al. [58], the objective function minimized
y Jang et al. is the inverse of the current density rather than the
egative. Nevertheless, optimal solutions were obtained for low
nd high flow rate cases in 4–5 days of computing time. The justi-
cation for the inclusion of the baffles is improved water removal

rom under the land area by convection and a “subtle” effect on the
erformance of the cell. The results presented show an increase in
erformance of 14% with respect to a base case with baffles mid-
ay along each channel, but make no comparison between a case
ith no baffles. Furthermore, the effects the baffles have on water

apour distribution and pressure drop within the cell are ignored.
hile this is an interesting application of shape optimization, the

ractical application of the optimization results should be further
nvestigated.

.1.2. Electrode optimization
Song et al. [63,64] pioneered the use of numerical optimization

or electrode design. In their publications, they optimized the
atalyst layer composition of a PEM fuel cell in order to achieve
aximum current density at a specified voltage of 0.6 V. In both

ublications, a one-dimensional, macro-homogeneous catalyst
ayer model was used to analyze the cathode catalyst layer. The
umerical model was validated with respect to experimental data

n Ref. [73]. In Ref. [63], the design variables that are used are the
afion volume fraction, the platinum loading, and the thickness
f the catalyst layer. The optimization problem is solved with
espect to only one or two of these design variables, therefore
ot taking full advantage of using numerical optimization. The
ATLAB SQP solver fmincon is used to solve the optimization

roblem. The optimization results show an optimum ionomer
oading of approximately 30 wt%, in agreement with previously
eported experimental data [6,3].

In Ref. [64], a functionally graded electrode is optimized. The
esign objective is to maximize current density. The design variable

s to obtain either the optimal Nafion volume fraction distribution
r the platinum loading distribution in the thickness of the catalyst
ayer. In another case, both Nafion and platinum loading distribu-
ions are optimized simultaneously. The thickness of the catalyst
ayer is assumed to be 25 �m. The results show that the optimal
istribution contains the most amount of Nafion and platinum near
he membrane. Both Nafion and platinum loading decrease as the
DL is approached. In this study, the MATLAB SQP solver fmincon

s also used to solve the optimization problem. The numerical opti-
ization results are in agreement with experimental data in [74].
Rao and Rengaswamy [75] looked specifically at the optimiza-

ion of one agglomerate in a CL. They presented two optimization
tudies: (a) minimizing the amount of platinum inside an agglom-
rate at a given voltage and current, and (b) maximizing the current
enerated in the agglomerate. A third formulation is also presented
here the current densities at several points in the polarization

urve are optimized simultaneously, leading to a multi-objective
roblem. The design variables are the platinum to carbon ratio in
everal radial shells of the agglomerate, i.e. the platinum to carbon
atio distribution within the agglomerate. No attempt was made to

nclude the agglomerate model presented into a CL model. The gov-
rning equations of the agglomerate model are discretized using
nite differences and are included in the optimization problem as
onstraints. The combined analysis-optimization problem is solved
sing the SQP algorithm in MATLAB fmincon.
ources 196 (2011) 3690–3704

Secanell et al. used a two-dimensional, through-the-channel,
macro-homogeneous cathode electrode model [76,68] and a two-
dimensional, through-the-channel, agglomerate cathode electrode
model [69] to obtain the CL platinum loading, Nafion loading and
platinum to carbon ratio, and GDL porosity that maximized the cell
current density at a given operating voltage (0.6 V). To solve the
optimization problem, a gradient-based interior point optimiza-
tion algorithm was used in conjunction with analytical sensitivities
(direct method). Since the problem is nonlinear, using the direct
method to obtain the analytical sensitivities resulted in large com-
putational savings and a good convergence to the optimal solution.
Due to the low computational requirements of this method, an
electrode model with a state-of-the-art catalyst layer model was
used to predict fuel cell performance. In Ref. [69], the optimal com-
position of the electrode for different microstructures and under
different operating conditions is presented. The results led to the
conclusion that a large improvement in fuel cell performance could
be achieved by increasing the weight ratio of platinum to catalyst
support. This conclusion has been confirmed by the recent trend of
fuel cell manufacturers to use 46% platinum weight ratio catalyst
instead of the previously used 20% weight ratio catalyst. The opti-
mal Nafion loading is predicted to be slightly higher than previous
experimental studies; however, this is shown to be a result of the
increased platinum to carbon ratio.

Secanell et al. performed the first attempt at trying to optimize
an anode catalyst layer [70]. The anode design does not usually limit
fuel cell performance; therefore, the objective was to minimize
platinum loading. In order not to reduce the cell performance, the
value of the anode current density was constrained to 1.5 A cm−2

at an overpotential of 15 mV. The design variables again were the
CL platinum loading, Nafion loading and platinum to carbon ratio,
and GDL porosity. Further, the anode catalyst layer thickness was
also optimized. The results from this study showed that the optimal
anode CL would have a thickness of 1 �m and a platinum loading
of 0.0025 mgPt · cm−2. For this study, an in-house electrode model
and an interior-point method were used for the analysis and opti-
mization simultaneously.

Secanell et al. have recently presented an optimization for-
mulation to design a complete MEA [77]. The MEA model
is a two-dimensional, through-the-channel, isothermal, isobaric
model. It includes the previously optimized agglomerate anode
and cathode electrode models, and a proton conducting membrane.
The design objective was to maximize current density. The design
variables were the CL platinum loading, Nafion loading and plat-
inum to carbon ratio, and GDL porosity in both anode and cathode.
By optimizing the composition of the two electrodes in the MEA
simultaneously, the design process accounted for the electrode
composition and microstructure as well as their interaction. The
article showed that the optimal compositions in the anode and the
cathode are remarkably different.

Using the optimization framework presented in reference [77],
Secanell et al. [44] optimized both performance and platinum load-
ing. To illustrate the trade-offs between the two objectives, a Pareto
set is presented. To solve the multi-objective problem, the weighted
sum method was used. The method provides good results, and it is
readily implemented in the optimization framework DAKOTA [78].
In this article, the first multi-objective optimization framework was
presented to quantify the trade-offs between cost and performance
in MEA design. Using this methodology, it was shown that a sub-
stantial increase in performance can only be achieved by increasing
platinum loadings in the range of 0.1–0.5 mg cm−2. For higher load-

ings, the increment in performance is marginal, and does not justify
the increased cost.

Zhang et al. [53] optimized the porosity, permeability and thick-
ness of the anode and cathode GDLs and the inlet gas stoichiometry
in order to minimize the cathode overpotential at a cell voltage
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f 0.6 V. They used CFD-ACE+ to solve a three-dimensional single
ell model with seven serpentine channels. The optimization prob-
em was obtained using Powell’s algorithm, a non-gradient based

ethod based instead on the conjugate directions algorithm. Per-
ormance of the optimization algorithm was not reported in the
rticle. They minimize the potential drop in the cathode with the
im of creating a more active cathode catalyst layer to increase per-
ormance. The results show that at the design voltage of 0.6 V, the
urrent density distribution within the cathode is more uniform.
nterestingly, the total current produced by the cell does not change
rom the reference case at this voltage; the optimized design only
eems to perform better at cell voltages below 0.5 V.

Jain et al. [79] extended the cathode agglomerate model pre-
ented by Secanell et al. [69] in order to obtain optimal platinum
oading distributions in the CL at either a given cell voltage or cur-
ent density. The optimal distribution of platinum shows the same
rends as those reported by Song et al. [64], i.e. higher loading near
he membrane. Jain et al. also solved the current density maxi-

ization problem in reference [69] using a nonlinear interior point
ethod (gradient-based method) implemented in IPOPT. Excel-

ent agreement was obtained. Following the approach of Rao and
engaswamy [75], the model governing equations are discretized
sing a finite difference method and are included as constraints of
he optimization problem. This approach, usually referred as all-
n-one or simultaneous analysis and design approach (SAND), can
ubstantially reduce computational costs because the optimiza-
ion algorithm is used to solve the governing equations and the
ptimization problem simultaneously.

Basri et al. [80] have recently used numerical optimization
o minimize the cost of a direct methanol fuel cell (DMFC). The
rticle also presents an attempt at solving the numerical optimiza-
ion process using a simultaneous analysis and design approach
SAND) [8,81]. In the SAND approach, the governing equations of
he problem are included in the optimization algorithm as equal-
ty constraints. In Ref. [80], the equality constraints represent the
overning equations of a zero-dimension model; however, the
xact physical meaning of each governing equations is not given.
he design variables in the optimization problem were not clearly
efined since the authors did not differentiate between design
arameters and values obtained in order to satisfy the governing
quations. To solve the SAND optimization problem, the MATLAB
outine fmincon is used where the initial design is given by solving
he same problem using the GA library. As discussed previously,
he authors of this review question the appropriateness of using a
ero-dimensional model to obtain optimal platinum loadings and
lectrode thicknesses; therefore, the results from the optimization
re not discussed. Even though the work in Ref. [80] uses a model
hat might be too simplistic for electrode design, this work is one
f the first to use a SAND approach in fuel cell design. Using this
pproach could lead to great saving in computational time, espe-
ially if used in combination with multi-dimensional, high-fidelity
uel cell models.

.1.3. Operating conditions optimization
Articles in the literature regarding optimization of the operat-

ng conditions can be divided in two categories: (a) optimization
f operating conditions at the cell level [82,45,83–85]; and (b)
ptimization of operating conditions at the fuel cell system level
86,87]. This section discusses the former category. Fuel cell system
ptimization studies will be discussed in more detail in Section 4. It
hould be noted that the optimization of the operating conditions

f the fuel cell level should involve both an accurate fuel cell model
nd a complete fuel cell system model. Otherwise, the optimization
lgorithm would always choose a high pressure and stoichiometry
ince these values are usually constrained by the power consump-
ion of the air compressor [86].
ources 196 (2011) 3690–3704 3697

Mawardi et al. [82] were the first to use numerical optimiza-
tion for optimizing the operating conditions of a single cell. They
used a one-dimensional, non-isothermal model to optimize the
operating conditions of an MEA operating with hydrogen from
a reformer. The objective function was to maximize power den-
sity at a given current density. The design variables were nine
operating parameters, i.e., temperature, anode and cathode pres-
sure, stoichiometry and relative humidity, nitrogen to oxygen mole
fraction and carbon dioxide to hydrogen mole fraction. There are
constraints for all design variables and three additional constraints:
(a) minimum membrane hydration, (b) maximum temperature rise
(in order to limit membrane degradation), and (c) maximum cell
voltage (since size and capital cost increase at higher potential
due to lower current densities). The Nelder–Mead simplex method
combined with a simulated annealing algorithm was used to
solve the optimization problem. These algorithms are non-gradient
based methods and, therefore, the gradients are not necessary.
Non-gradient based methods are usually more computationally
expensive than gradient-based. In the paper, the number of calls
to the analysis code and the computational time necessary to reach
the solution are not discussed, so no comparisons can be made here.
The optimization problem is solved for six different cases: (a) base
case, (b) thinner membrane, (c) thinner electrode, (d) decreased
min. cell potential, (e) increased max. temperature, and (f) CO in the
anode stream. For each design, the optimization problem is solved
at five different current densities. Results from the optimization
show that the optimal operating conditions strongly depend on the
current density and on the case being solved.

To the knowledge of the authors, Wu et al. [83] presented
the only attempt in the literature at trying to account for the
effects of system level performance when optimizing the oper-
ating conditions using a multi-dimensional fuel cell model. They
also performed the first attempt at using a radial neural network
as a surrogate model to reduce the computational time during
optimization. Wu et al. [83] aimed at optimizing fuel cell system
efficiency at low (0.15 A cm−2), medium (0.45 A cm−2) and high
(0.75 A cm−2) current densities. The following objective is used to
measure fuel cell system efficiency:

f (x) = �sys = AiVcell

Ġ + ẇhum + ẇcompressor

(6)

where A is the active area, i is the current density, Vcell is the
predicted cell voltage, Ġ is the maximum electrical power with
the input fuel (accounting for stoichiometry and hydrogen recy-
cling effects), ẇhum is the humidifier power and ẇcompressor is the
compressor power. The latter two values are obtained based on
semi-empirical relations [88].

The design variables used were the cell temperature and the
cathode gas pressure, stoichiometry and relative humidity. The
multi-dimensional model was isothermal, single-phase, and con-
sisted of independent models of different dimensionality for each
layer that were then solved iteratively, e.g., a 3D model for the
membrane and GDL, a 1D model for the cathode catalyst layer
and a zero-thickness model for the anode catalyst layer. The multi-
dimensional model was used to train a radial neural network that
was then used for the optimization. A very limited discussion
is given about how the radial neural network was trained. The
optimization algorithm used was the feasible sequential quadratic
programming (FSQP) method. Wu et al. [83] report optimal values
for both an ideal system (no system losses) and a realistic system

(including compressor and humidifier losses). For the ideal system,
stoichiometry and pressure reached the upper bounds at medium
and high current densities. For the realistic system, cathode stoi-
chiometry was between 1.25 and 2 and pressure between 1.5 and
3 atm. The optimal cathode relative humidity was between 10% and
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solid oxide fuel cells (SOFCs) is even more scarce than for PEM-
FCs. At the time of this review, the only attempt to use numerical
optimization for SOFC single cell design was that of Bhattacharyya
and Rengaswamy [92]. In their article, the geometry of a tubular
SOFC is optimized in order to achieve two objectives: maximize

Table 1
Summary of fuel cell optimization studies: problem formulation.

Reference Objective function

Channel design:
Grujicic et al. [54] max i(Vcell = 0.7 V)
Grujicic et al. [55] max i(Vcell = 0.7 V)
Grujicic et al. [56] max i(Vcell = 0.7 V)
Lin et al. [57] max P(�cat = 0.25 V)
Cheng et al. [58] max P(Vcell = 0.7 V)
Huang and Lin [59] max i(Vcell = 0.3 V)
Huang et al. [60] max i(Vcell = 0.7 V or 0.4 V)
Wang et al. [61] max P(Vcell = 0.4 V)
Xing et al. [62] max i(Vcell = 0.7 or 0.4 V)
Zhang et al. [71] min equation (5)
Jang et al. [72] max i(Vcell = 0.7)

Electrode design:
Song et al. [63] max i(Vcell = 0.6 V)
Song et al. [64] max i(Vcell = 0.6 V)
Song et al. [64] min mPt,agg

Rao et al. [75] max iagg(Vcell = 1.05 − 0.4)

Rao et al. [75] max
∑12

j=1
iagg (Vj,cell = 1.04 − 0.45)

Secanell et al. [68] max i(�cat = 0.3 V)
Secanell et al. [69] max i(�cat = 0.3, 0.5, 0.7 V)
Secanell et al. [70] min mPt,a

Secanell et al. [77] max i(�cat = 0.3, 0.5, 0.7 V)
Secanell et al. [44] max i(�cat = 0.3, 0.5, 0.7 V) and min mPt

Zhang et al. [53] min �(0.6 V)
Zhang et al. [53] min mPt

Jain et al. [79] max i(�cat = 0.3 V)

Operating conditions:
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5% which seems extremely low. Based on the predicted efficiency
t the optimal solution using the multi-dimensional model and the
adial neural network, the neural network was able to predict the
ell performance at the optimal point within an accuracy of ±2%. In
his case, it seems that the neural network was trained only at the
eginning of the optimization. It would be beneficial to train the
eural network, or any surrogate model, during the optimization
rocess in order to guarantee that the approximated optimiza-
ion problem converges to the optimal solution of the high-fidelity

odel [89].
Chen et al. [45] investigated optimizing fuel cell operating con-

itions in order to minimize the fuel cell’s capital and operating
osts. The objective function was multi-objective with the follow-
ng three objectives: (a) minimize the annualized cost of the cell,
b) minimize the fuel costs, and (c) maximize the credits for the
xhaust hydrogen. The annualized cost of the cell was obtained
s the ratio of cell active area to lifetime multiplied by a coeffi-
ient representing the cost of a square meter of active area. The
econd term was obtained by multiplyting the hydrogen flow rate
y the cost of hydrogen. The latter term uses the same relation-
hip but a different coefficient that represents the credit obtained
y reusing the exhaust fuel. To predict the cell performance, a very
imple zero-dimensional cell/stack model was used. There were
wo design variables: (a) the cathode overpotential, and (b) the
ydrogen mole fraction at the outlet. All other operating conditions
re obtained using the zero-order model, e.g. active area, anode
ressure and cell voltage, The authors proposed two optimization
lgorithms: (a) a discretization method, and (b) a branch and bound
nterval analysis. The former is simply a parameteric study; there-
ore, in our opinion, it should not be considered as an optimization
lgorithm. Further, the only reason Chen et al. were able to use this
ethod is because the number of design variables was two. The

atter method is usually used for discrete design variables, there-
ore it might be very computationally expensive. Results from Chen
t al. [45] suggested that electricity production rates with a fuel
ell could be competitive with commercial rates; however, they
lso highlighted that the results have significant sensitivity to input
arameters. Even though the fuel cell model is very simple and the
umber of design variables is small, Chen et al. work highlights that
umerical optimization can be used, not only for optimizing per-

ormance, but also to minimize fuel cell costs, a critical issue for
uel cell commercialization.

Two articles have dealt with operating condition optimization
n direct methanol fuel cells (DMFCs). Ko et al. [84] use a zero-
imensional, non-isothermal, mechanistic model to optimize the
uel efficiency of a DMFC. They first calibrate the model using a
east-squares optimization method to determine kinetic parame-
ers in the electrode. Anode and cathode flow rates and reactant
oncentrations are optimized over a time interval with varying
oad requirements using the dynamic optimizer DYNOPT. Wu et al.
85] extended this study and developed a multi-objective for-

ulation. A similar model to Ref. [84] is used to maximize both
he fuel efficiency and exergy efficiency, and minimize methanol
rossover through the membrane. A fuzzy logic-based optimizer
s employed to determine the optimal anode inlet temperature,
ounded between 40 and 80 ◦C, at every time step for an inter-
al with varying load requirements. The results for both studies
how that there is much to be gained in the way of efficiency for
ynamic control of DMFC systems without the need for extensive
xperimental testing.
.1.4. Stack optimization
Two examples of stack optimization were found in the litera-

ure, and both are for PEMFCs. Wang and Dong [90] performed an
ptimization on their patented Tri-stream, External-manifolding,
nd Radiator Stack (TERS) using a zero-dimensional, isothermal,
ources 196 (2011) 3690–3704

and semi-mechanistic stack model, along with an algorithm known
as the Adaptive Response Surface Method (ARSM) developed in-
house. The algorithm improves upon the Response Surface Method
(RSM) by reducing the design space systematically to ensure the
accuracy of the method approximation. The objective function is
the system net power and the design variables are the fin height,
fin thickness, and fin wavelength, all physical dimensions of the
FC stack. The optimized dimension results compare favourably to
a CAD model developed in Pro/Engineer where ANSYS is used to
perform a stress/strain analysis. Mohamed and Jenkins [91] used
a simple zero-dimensional, isothermal mechanistic stack model to
find the optimal number of cells in series, as well as parallel, in
the stack and the optimal cell membrane area to maximize power
output. The optimization method is GA, and the mathematical mod-
eling and optimization results are validated against empirical stack
data. That there are only two optimization examples of PEMFC
stacks shows that the area has yet to draw much in the way of
research.

3.1.5. Summary
Table 1 shows a summary of optimization studies and their

objective functions in fuel cell design. The design variables and con-
straints for theses studies are shown in Table 2. Table 3 shows the
analysis and optimization codes used to solve the design problem.

3.2. High-temperature fuel cells

The number of articles dealing with numerical optimization of
Mawardi et al. [82] max Pd (W/cm2)
Wu et al. [83] max �sys (i = 0.15 or 0.45 or 0.75 A cm−2)
Chen et al. [45] min annualized cost
Ko et al. [84] max �fuel

Wu et al. [85] max �fuel , �sys and min rXover
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Table 2
Summary of fuel cell optimization studies: design variables and constraints.

Reference Design variable Constraints

Channel design:

Grujicic et al. [54] pin
c ,tGDL,c ,wc ,(wcc/(wch + wcc)) Bounds in variables

Grujicic et al. [55] tGDL,c ,hch,c ,wch,c bounds in variables

Grujicic et al. [56] tGDL,c ,wc ,(wcc/(wch + wcc)) Bounds in variables

Lin et al. [57] �CL
V

,�GDL
V

,wch/wcc None

Cheng et al. [58] �,hch ,tGDL None

Huang and Lin [59] Height of the gas channel (3 DV) None

Huang et al. [60] Height of the gas channel (4 DV) None

Wang et al. [61] Height and width of the gas channel (8 DV) None

Xing et al. [62] Case 1: �c None

Xing et al. [62] Case 2: �a

Zhang et al. [71] Width of gas channel and land Bounds in variables

Jang et al. [72] Location of baffles in channel Bounds in variables

Electrode design:

Song et al. [63] �N , mPt, tCL,c �N + �V + �S = 1

Song et al. [64] Either �N or mPt distribution �N + �V + �S = 1

Rao et al. [75] Pt | C (9DV) Bounds in variables

Secanell et al. [68] �GDL
V

,�agg ,mPt,Pt | C Bounds in variables

Secanell et al. [69] �GDL
V

,�agg ,mPt,Pt | C Bounds in variables

Secanell et al. [70] �GDL
V

,�agg ,mPt ,Pt | C Bounds in variables,

i(�a = 15mV) = const

Secanell et al. [44,77] �CL,a
N

, �CL,a
V

, mPt,a , �GDL,a
V

, Bounds in variables

�CL,c
N

, �CL,c
V

, mPt,c , �GDL, cV

Zhang et al. [53] �GDL,a
V

, �CL,a
V

, tGDL,a , kGDL,a , �a , Bounds in variables

�GDL,c
V

, �CL,c
V

, tGDL,c , kGDL,c , �c

Jain et al. [79] �GDL
V

,�agg ,mPt,Pt | C 1: Bounds in variables

2: Bounds in variables

3: Bounds in variables

Operating conditions:

Mawardi et al. [82] Tcell , pc , pa , RHc , RHa , xi , (9DV) Bounds in variables,�N , Vmax

Wu et al. [83] Tcell, pc , �c , RHc Bounds in variables

Chen et al. [45] Overpotential,H2 Mole fracti

Ko et al. [84] V̇c ,V̇a ,�c ,�a

Wu et al. [85] Tin
a

Table 3
Summary of fuel cell optimization studies: analysis and optimization codes.

Reference Analysis code Optimization code

Channel design:
Grujicic et al. [54] COMSOL MATLAB—fmincon
Grujicic et al. [55] COMSOL MATLAB—fmincon
Grujicic et al. [56] COMSOL MATLAB—fmincon
Lin et al. [57] In-house SCGM
Cheng et al. [58] CFD-ACE+ SCGM
Huang and Lin [59] CFD-ACE+ Maquardt
Huang et al. [60] CFD-ACE+ Maquardt
Wang et al. [61] FLUENT SCGM
Xing et al. [62] COMSOL MATLAB—fmincon
Jang et al. [72] CFD-ACE+ SCGM

Electrode design:
Song et al. [63] MATLAB 1D CL model MATLAB—fmincon
Song et al. [64] MATLAB 1D CL model MATLAB—fmincon
Rao et al [75] Maple-MATLAB MATLAB—fmincon
Secanell et al. [68] In-house DOT—SQP
Secanell et al. [69] In-house DAKOTA—OPT ++
Secanell et al. [70] In-house DAKOTA—OPT ++
Secanell et al. [77,44] In-house DAKOTA—OPT ++
Zhang et al. [53] CFD-ACE+ Powell
Jain et al. [79] In-House-AMPL IPOPT

Operating conditions:
Mawardi et al. [82] In-house Nelder-Mead
Wu et al. [83] In-house FSQP
Chen et al. [45] In-house Branch-and-bound
Ko et al. [84] In-house DYNOPT - SQP
Wu et al. [85] In-house Fuzzy set multi-objective
on out Bounds in variables

Bounds in variables

Bounds in variables

the gravimetric power density in order to reduce cost, and maxi-
mize the volumetric current density in order to reduce cell size. The
design variables are: (a) radius of the anode channel, (b) the cell
length, and (c) the annulus size. The multi-objective optimization
problem is formulated using a so-called lexicographic approach.
Using this approach, a first optimization problem is solved that has
only the first objective function, deemed the most important to the
designer. The second objective problem is then solved separately
using an additional constraint in order to guarantee that the value
of the original objective is equal or larger than the value obtained
in the first optimization. If there are more than two objectives this
process is continued. Bhattacharyya and Rengaswamy are the first
to apply this approach to solve a multi-objective fuel cell design
problem. In order to predict the performance of the fuel cell, a two-
dimensional (radial and along the tube), isothermal, non-isobaric
SOFC model is used. A zero-thickness model is used to model the
catalyst layers. The model is validated against experimental data at
two temperatures and two hydrogen flow rates. To solve the sys-
tem of PDEs resulting from the governing equations, the PDEs are
discretized in MAPLE by forward/backward differences. Then, the
resulting nonlinear system is exported to MATLAB and solved using
the nonlinear solver fsolve. The multi-objective single cell design
problem is solved using the SQP function fmincon. The optimiza-

tion problem is solved at different voltages and at two operating
conditions: T = 800 K, 45 ml/min and T = 850 K, 35 ml/min. The lat-
ter optimal design achieved 30% and 65% increases in gravimetric
and volumetric power densities, respectively. The changes in the
radius of the anode channel, cell length, annulus size were 22%, 8%
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nd 20% respectively. These changes remained very similar at any
ell voltage from 0.9 V to 0.5 V.

The development of computer software that is capable of pro-
iding analytical sensitivities is critical in order to be able to
erform numerical optimization using multi-dimensional codes
ith a reasonable amount of computational resources. The works

f Kapadia et al. and Elliott et al. are paving the way towards
ntroducing multi-dimensional numerical optimization to SOFC
esign [65,66,93]. Even though they have not yet performed any
umerical optimization studies, these references introduced a
ulti-dimensional model for SOFCs that was capable not only

f predicting the fuel cell performance but also of obtaining the
ensitivities of several functionals, such as current density, with
espect to different design parameters such as anode and cath-
de porosity. Sensitivities were obtained using forward-differences
s well as analytical differences using both direct and adjoint
ethods.

. Fuel cell systems integration

The objective of the optimization for fuel cell systems (FCSs) is
sually either the improvement of a given design by varying sys-
em operation parameters or the improvement of the design by
arying system physical characteristics while keeping the oper-
ting parameters constant. In rare cases, a combination of these
wo objectives has been realized in the literature. Optimiza-
ions of system operation parameters are much more common
or fuel cell systems optimization than it is for single fuel cell
ptimization where cell design is more prevalent. This section
s a review of the literature for FCS optimization, but is lim-
ted in scope to stand-alone FCSs and does not consider hybrid
ystems.

FCSs can be categorized initially by the type of fuel cell: PEMFC
nd high-temperature fuel cell systems are the two main types that
ave been optimized in the literature. There are many more opti-
ization studies of PEMFC-based systems than high-temperature

ystems. The next categorization is by optimization objective,
ither changing certain aspects of the design to arrive at an opti-
al design or improving the operation of a given FCS design. The

hird categorization is by model type: theoretical (mechanistic),
emi-empirical, and empirical, as discussed in Cheddie et al. [94].
rom an examination of the literature, zero-dimensional, steady-
tate, isothermal, semi-empirical models of PEMFC-based systems
re most commonly used to optimize the operating parameters.
rom the authors’ perspective, the full value of optimization has
ot yet been realized for the optimization of FCSs, where there is
conspicuous absence of a validated transient, three-dimensional,

heoretical model with optimized physico-chemical parameters. It
ust be noted that such a model is rare in the literature and the

evel of complexity would likely make the computational resources
equired to solve the optimization problem onerous. However,
hese deficiencies illustrate that the field of FCS optimization is rel-
tively immature and there is substantial room for more ambitious
ptimization attempts.

The following two sections will include a review of optimiza-
ion studies in PEMFCs and high-temperature fuel cell systems
ound in the literature. The categorizations from above will be used
o group similar attempts and to distinguish between the various
ptimizations.

.1. Low-temperature fuel cell system optimization
The review of the optimization of PEMFC systems will first
nclude the operating parameter optimizations, followed by non-
umerical system design optimizations, and finally the attempts at
hysico-chemical optimizations.
ources 196 (2011) 3690–3704

4.1.1. Operating parameters optimization
Five research groups used zero-dimensional, steady-state, semi-

empirical models for operating parameter optimizations. Blunier
and Miraoui [95] optimized the net system voltage at a given cur-
rent by varying the system pressure and the air stoichiometry. The
objective of the study is to elucidate the effect of air humidity in the
stack outlet. It was concluded that fully humidified air at the stack
inlet can be detrimental to voltage at low airflow rates because high
air stoichiometry is required to avoid flooding of the electrode. At
high airflow rates, full humidification is required to avoid mem-
brane drying. Wishart et al. [86,96] used the stack model of Mann
et al. [97] to perform single- and multi-objective optimizations of
net system power and efficiency by varying stack pressure, tem-
perature, and air stoichiometry. Local (SQP) and global (simulated
annealing and genetic algorithms) optimization algorithms were
compared for efficacy and solution speed. The multi-objective opti-
mization results were applied to a low-speed hybrid electric vehicle
undergoing the New York City Cycle (NYCC) drive cycle. Na and
Gou [98] optimized the system efficiency and cost with respect
to system pressure, reactant stoichiometric ratios, stack voltage,
and stack current as the design variables. A sequential quadratic
programming (SQP) was used to solve the problem; therefore, it
is unclear whether only local optimal solutions were found. Xu
et al. [99] used the commercial Aspen Plus software to model the
reformer of a PEMFC system and a simple theoretical, steady-state,
zero-dimensional stack model from Godat and Marechal [100]. The
design variables were the steam methane reformer (SMR) temper-
ature, water gas shift (WGS) temperature, and feed rate of methane.
These design variables were determined from a sensitivity analy-
sis study performed in Aspen Plus. Using water instead of steam
as the process feed was also considered. The objective functions
are efficiency and cost and the optimization algorithm was SQP.
The results show that there is a benefit to performing the cost and
efficiency optimizations simultaneously rather than sequentially.
Lastly, Xuan et al. [101] use a response surface method (RSM) to
optimize a PEMFC stack model while considering balance of plant
(BOP), including an air pump and cooling fan in their formulation
of stack power. The optimization problem is multi-objective, mini-
mizing fuel consumption while maximizing stack power using the
stack current, temperature, and stoichiometry and relative humid-
ity of the input streams as design variables. The conclusion from all
these optimization attempts is that judicious selection of operating
parameters has a significant impact on FCS operation, and that this
type of optimization should occur for any design.

4.1.2. Integer system design optimization
Two research groups have incorporated non-numerical system

design options in the optimization, where the binary variables
result in mixed-integer, non-linear programming (MINLP) prob-
lems. Marechal et al. [100] solved a MINLP problem using process
integration. The optimization incorporated an evaluation of a steam
methane reformer (SMR) and partial oxidation and reforming reac-
tor (POX) for hydrogen production and an evaluation of a water gas
shift (WGS) reaction using either a medium-temperature reactor
or two-step (high- and low-temperature) reactor system for post-
reforming CH4 processing. The stack model is zero-dimensional,
steady-state and mechanistic. The design variables are the steam
to carbon ratio, oxygen to nitrogen ratio, oxygen to carbon ratio,
fuel processing temperature, fuel utilization, and post-combustion
pressure. The optimization uses genetic algorithms, and it is
thermo-economic, thereby maximizing system efficiency and min-

imizing system cost. Kamarudin et al. [102] employed a methanol
feed and reformer action to obtain hydrogen for a PEMFC system.
Five reforming methods are used as design variables, as are reac-
tant flow rates and molar fractions. The resulting MINLP is solved
using the SQP algorithm. The five alternatives are optimized for
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O output as well as investment and manufacturing costs. The FC
tack is the zero-dimensional, steady-state, semi-empirical model
f Mann et al. [97]. The objective of the study was to apply the
uperstructure-based approach to the optimization of the reactor-
eparation network of the FCS.

Most recently, Han et al. [103] presented a model of a fuel cell
ehicle with an integrated quasi-static model of a fuel cell stack.
hey validate their model against a fully dynamic fuel cell model by
imulating loading of three typical drive cycles and achieve agree-
ent to within 5% of overall fuel efficiency with a 98% reduction

n simulation time. The vehicle model considers driving dynam-
cs, powertrain performance and weight of all critical components.
he goal of the optimization is to maximize the fuel economy of the
ehicle with respect to several integer design parameters, such as
umber of cells in the stack, number of battery units, and continu-
us design variables, such as gear ratios and power control limits.
ll the variables are bounded, and further design constraints are

mposed related to performance such as acceleration and top speed.
he algorithm also contains an inner optimization loop which max-
mizes the stack power at every iteration by selecting the optimal
ir excess ratio, subject to flow rate constraints corresponding to
he operating limits of the compressor. Two different algorithms,
IRECT and NOMADm, optimize the system with an increase of
4% in fuel efficiency from the base case, but with a slightly differ-
nt set of design variables. Han et al. [103] extend the study and
se NOMADm to optimize the system when regenerative braking

s included in the model. Here, an 18% increase in fuel efficiency
s observed. This type of model and optimization can be expanded
o full vehicle design with additional space (packaging) and cost
onstraints.

.1.3. Physico-chemical optimization
Finally, there are three examples of physico-chemical optimiza-

ions in the literature. Xue and Dong [104] used a semi-empirical,
teady-state model of a Ballard Mark IV fuel cell stack from Mann
t al. [97] and models for auxiliary systems such as the air com-
ressor in order to create a comprehensive fuel cell system model.
sing this model and joint concurrent optimization, the optimal
ctive stack area and air stoichiometry ratio were obtained to maxi-
ize net power output, and, at the same time, minimize production

osts.
Wang and Dong [105] optimized a fuel cell system as a demon-
tration of a novel optimization algorithm called the ARSM. The
tack model was again the model from Mann et al. [97]. The design
ariables were the air stoichiometry, stack width, supporting col-
mn width, number of cells in the stack, end plate thickness,
anifold cover thickness, and the height of the fins in the stack.

Table 4
Summary of fuel cell system optimization studies: problem formulation and

Reference Objective function

Operating conditions:
Blunier and Miraoui [95] Inlet air pressure and
Wishart et al. [86,96] System power and effi

Na and Gou [98] System efficiency and
Xu et al. [99] System efficiency and

Integer:
Marechal et al. [100] System efficiency and
Kamarudin et al. [102] Cost and CO productio
Han et al. [103] Fuel efficiency

Physico-chemical:
Xue and Dong [104] System power, efficien
Wang and Dong [105] System power and cos
Ang et al. [106] System efficiency and
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A sensitivity analysis showed that the air stoichiometry, end plate
thickness, manifold cover thickness, and fin height did not have
a large impact on the net power, and so only the stack width,
supporting column width, and number of cells were used in the
optimization. The optimization results showed an improvement in
system efficiency, net power, volumetric and gravimetric power
densities, as well as in a reduction of system costs.

Ang et al. [106] used the system efficiency and MEA area as
design variables to determine the optimal values for a given net
system power. The fuel cell model is for a single-cell stack, and
the model is isothermal and isobaric as well as zero-dimensional.
The optimization algorithm is LINDOGlobal, a commercial solver
available from Lindo Systems, Inc. The algorithm is a branch-and-
cut method that disaggregates an NLP into smaller problems. Ang
et al. [106] conclude that for a given power output that a more effi-
cient system has a larger MEA and vice versa. The multi-objective
optimization reveals that system efficiency should remain between
40% and 47% and that the MEA size should be at least as large as
3 cm2 W−1.

4.1.4. Summary
The optimization examples of PEMFC systems highlight the need

for more ambitious optimization attempts. None of the models are
transient and all are zero-dimensional. As confidence in stack mod-
els increases, the computational resources necessary for solving
stack models are reduced and optimization algorithms are evalu-
ated, it is expected that the level of fuel cell system complexity used
will increase. Table 4 lists a summary of the PEMFC-based system
optimizations discussed in this section.

4.2. High-temperature fuel cell system optimization

High- and medium-temperature FCS optimization has been
attempted by several research groups but the list of examples is not
extensive. If interest in this type of fuel cell continues to grow, more
widespread modeling and optimization efforts can be expected.

Two research groups have explored the optimization of molten
carbonate fuel cell (MCFC) systems. Yong et al. [107] make use
of a zero-dimensional, steady-state model for a molten carbon-
ate fuel cell (MCFC) system, where fuel consumption is minimized
by varying the reactant flow rate and cathode gas recycle ratio.
The optimization is performed using genetic algorithms. The opti-

mization results are validated using an experimental 10 kW MCFC
system designed for stationary, residential applications. Chudej
et al. [108] optimize the control strategy of a MCFC in order to
balance the allowed speed of load changes and the allowed tem-
perature differences inside the cell. The objective is to ensure

optimization algorithm.

Optimization algorithm

stoichiometry Not given
ciency SQP

Genetic algorithms
Simulated annealing

cost SQP
cost SQP

cost In-house
n SQP

MATLAB—NOMADm

cy, and cost Not given
t Adaptive response surface
MEA size LINDOGlobal
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Table 5
Summary of high- and medium-temperature fuel cell system optimization. Problem formulation and optimization algorithm.

Reference Objective function Optimization algorithm

MCFC:
Yong et al. [107] Fuel consumption Multi-crossover genetic algorithm
Chudej et al. [108] Temperature time gradients Sparse SQP (SNOPT)

SOFC:
Barratto and Diwekar[109] System efficiency, cost, and environmental impact MINSOOP
Palazzi et al. [110] System efficiency and cost In-house
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Vijay et al. [111] System efficiency

PAFC:
Zervas et al. [112] Fuel consumption

hat the material’s thermal stress resulting from large tempera-
ure gradients does not compromise the structural integrity. The
ptimization is performed on a complex 2D crossflow model and
esults in a large number of partial differential equations (PDEs) as
art of a Pareto-optimal control problem. The results are validated
gainst a closely related model of an actual MCFC system, and the
uthors conclude that as the system models grow in complexity,
odel reduction techniques such as proper orthogonal decompo-

ition may become necessary.
Other research groups attempted optimization of SOFC-based

ystems. Barratto and Diwekar [109] performed a multi-objective
ptimization of efficiency, environmental impact, cost, and health
mpact using the SOFC model in the Aspen Plus process simu-
ation to be used in auxiliary power units (APUs) of heavy-duty
ehicles at rest stops in the South California Air Basin. The design
ariables were diesel fuel intake, reformer temperature, system
ressure, cathode air stoichiometric ratio, air pre-heater temper-
ture, and fuel utilization in the stack. The optimization resulted
n a set of alternative designs that optimize cost, efficiency, and
nvironmental and health impacts separately: no relative weight-
ng of these objectives was assigned. Palazzi et al. [110] used the
ELSIM-VALI and EASY software developed in-house to conduct
thermo-economic optimization of the design of a 50 kW, pla-

ar SOFC system for stationary applications. The optimization of
inimizing cost and maximizing efficiency uses the Pinch method

nd genetic algorithm to produce the Pareto curves that demon-
trate the trade-offs of the two objectives, and can be used in
aking design decisions. Vijay et al. [111] use an SOFC system
odel with inlet stream heat exchangers and an afterburner and

im to maximize the efficiency. MATLAB’s fminsearch is used for the
ptimization with the anode and cathode flow rates as the design
ariables. They investigate the trade-offs between operating the
ell at maximum efficiency or at constant fuel utilization across its
perating range. The results show that the tradeoffs between the
wo cases are small.

A single medium-temperature fuel cell system optimization
ould be sourced in the literature. Zervas et al. [112] employ a
ully three-dimensional, CFD, steady-state, isothermal model in a

eta-model approach that generates a database of system vari-
bles. Linear regression and non-linear neural-network models
NNMs) are both used to develop the correlation between inputs
nd outputs and in the optimization of the NLP problem. The CFD
oftware is PHOENICS, and the SIMPLEST algorithm is used to solve
he resulting PDEs. The optimization objective is to reduce first the
uel volumetric flow rate and second the oxidant volumetric flow
ate and the different modeling and optimization methods used
emonstrate that various approaches can be used in this type of
ptimization.
.2.1. Summary
The number of optimization examples of high-temperature FCSs

s quite low, and this indicates that this area of research has not
MATLAB—fminsearch

GAMS

been fully explored yet. As in the case of PEMFCS optimization
attempts, more detailed models are required in order to substan-
tially increase the performance of high-temperature FCSs. As the
industry matures, the number of modeling groups is expected
to similarly increase. Table 5 lists a summary of the high- and
medium-temperature FCS optimizations. As in the previous sec-
tions, the constraints of the optimization were found to all be
bounds in the variables.

5. Conclusions

Fuel cell optimization is a relatively new area of research. Only
in the last decade have articles in the area of fuel cell optimiza-
tion started to appear in the literature. Competition to provide the
most cost effective, efficient and durable fuel cell, and advance-
ments in fuel cell computational models will increase the interest
in numerical optimization of fuel cells. Based on the current litera-
ture survey, the state of the art in fuel cell design and optimization
has already been able to provide insight that would have been dif-
ficult to obtain by trial-and-error. New optimization formulations
that include multiple objectives, e.g. cost, reliability and durabil-
ity, and additional design variables, e.g. the shape and topology of
the fuel cell flow channel, can provide further insight into the opti-
mal fuel cell geometry and composition and will lead to innovative
designs that cannot be designed by trial-and-error such as variable
cross-sectional area flow channel bipolar plates.

In the area of channel design, previous optimization studies
have mainly focused on optimizing current density. The design
variables have been the channel to land ratio and the channel
dimensions. The related assumption has been that the shape of
the channel would remain rectangular and that the cross-section
would be uniform. Only in the past two years, several research
studies have started to aim at predicting the optimal shape for chan-
nels with varying geometry. Unfortunately, these studies have been
limited to a small number of design parameters and to small sec-
tions in the gas channel. Therefore, research remains to be done
on finding a formulation to optimize the shape of the channel
along the flow direction. Channel design studies have also ignored
the tradeoffs between increasing current density and decreasing
pressure drop. Future work is also necessary to develop a multi-
objective formulation that accounts for both of these objectives
simultaneously.

All previous optimization studies in channel design have been
concerned with the shape of the channel. Obtaining the optimal
topology of the channels – e.g, serpentine, straight – might provide
substantially larger improvements in performance. For example, a
recent experimental study achieved an improvement of up to 30%

in fuel cell performance by changing the topology of the channels
in the flow field [113]. Topology optimization [13] can be used as
an innovative method to obtain the optimal layout and geometry
of the fuel cell flow field. Topology optimization for fluid flow has
only recently been attempted [114].
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In the area of electrode design, previous work has used aver-
ge porosity, platinum and Nafion loadings as design variables.
hese values dictate the structure of the catalyst layer. Future work
ust include the development of relationships between fabrica-

ion parameters and the final catalyst layer structure. Most articles
ave been concerned with maximizing the current density of the
lectrode. Cost, reliability and durability have now become the
ain barriers to fuel cell commercialization. Multi-objective for-
ulations such as the ones developed by Chen et al. [45], Rao and

engaswamy [75] and Secanell et al. [44] must continue to be devel-
ped. Since electrodes are three-dimensional structures, future
ork is also necessary in order to obtain functionally-graded elec-

rodes that can adapt to the changing concentration of the reactants
n the channels. To achieve this goal, the number of design variables
sed for designing the electrode must be increased substantially
nd a three-dimensional electrode model will be necessary.

In order to achieve realistic optimal designs, it is also necessary
o increase the accuracy of the fuel cell models and to analyze the
ange of applicability of the models. Most of the articles in chan-
el and electrode optimization use steady-state models. Models

or channel optimization usually rely on either a zero-thickness
r a macro-homogeneous electrode model. Electrode optimization
tudies rely on either a macro-homogeneous or an agglomer-
te model for predicting the CL performance. Recent models that
nclude the pore size distribution should be used in the future.
urther, in order to optimize durability, transient models will be
ecessary.

The current state of the art for FCS optimization is similar in
ome respects to that for the cell level. For the most part, the models
hat have been used have been steady-state and isothermal, with-
ut the required complexity to be both accurate representations of
eal-world systems and flexible enough to be applicable to a wide
ange of designs. As the models at the cell level increase in complex-
ty and accuracy, the system models that incorporate the former

ill follow suit. However, much work needs to be done in the mod-
ling and optimization of the subcomponents of the system such as
he air compressor. In most of the optimizations, the design vari-
bles are the operating parameters; while improving the operation
f a given FCS is useful, the true promise in using optimization in
CSs is to improve the design and manufacture processes, of which
ue and Dong [104] is an early, simple example.

Experimental validation of numerical optimized designs has
nly been performed in one study [59]. In order to increase the
onfidence in numerical optimization, a thorough experimental
alidation of the optimal designs obtained by numerical simula-
ion is necessary. The benefits of validating optimal designs go
eyond making sure that the design outperforms previous designs.
eveloping a new design based on optimization and testing its per-

ormance is the best method to test the predictive capabilities of
urrent analysis codes. Further, by analyzing the parameters for
hich the optimal designs are not properly predicted, the physical
henomena that is poorly understood can easily be highlighted and
an lead to development of new fuel cell mathematical models.

There are also other research areas that can benefit from
mproved numerical optimization methodologies. Some of the key
reas that can be improved using optimization algorithms are the
reas of parameter estimation and uncertainty analysis. Several
arameter estimation studies have recently appeared in the litera-
ure [115,116,67,117]. However, a parameter estimation technique
oupled with a multi-dimensional fuel cell model containing an
ccurate catalyst layer model still needs to be developed. Such a

ool would be extremely important to identify the value of some of
he key parameters in current fuel cell catalyst layer and single cell

odels such as agglomerate size and ionomer coverage. Further, to
ate, parameter estimation has only been used to fit polarization
urves; however, segmented cells offer the opportunity to fit the
ources 196 (2011) 3690–3704 3703

current distribution in a single cell. This information could be used
to obtain the key input parameters for multi-dimensional fuel cell
models.

Last but not least, in order to solve large-scale optimization
problems with tens or thousands of design variables, fuel cell anal-
ysis models that include analytical sensitivity analysis need to be
developed such as the models of Kapadia et al. [66] and Secanell
et al. [77].

In light of the recent progress made in new materials for fuel
cells, the necessity for design methodologies that are fast and reli-
able is tremendous. The potential of novel materials can only be
harvested by developing designs and operating conditions that
maximizing the advantages of the materials while minimizing their
weaknesses. If a novel material is introduced in a current cell design,
it might only perform slightly better or even worse simply because
the design was optimized to achieve the best performance for
the current materials. Given the amount of proposed new mate-
rials for fuel cells (e.g., new short-side chain PFSI and hydrocarbon
membranes, core-shell catalysts and new catalyst supports) and
the extensive time and money requirements of the trial-and-error
design approach, computational design and optimization is criti-
cal to the development of new fuel cell designs that can take full
advantage of these new materials.
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[14] E. Hontañón, M.J. Escudero, C. Bautista, P.L. Garcia-Ybarra, L. Daza, Journal of

Power Sources 86 (1) (2000) 363–368.
[15] J.V.C. Vargas, A. Bejan, International Journal of Energy Research 28 (4) (2004)

319–339.
[16] S. Grigoriev, A. Kalinnikov, V. Fateev, A. Wragg, Journal of Applied Electro-

chemistry 36 (9) (2006) 991–996.
[17] S. Liu, W. Kongb, Z. Lin, Journal of Power Sources 194 (2) (2009) 854–863.
[18] D. Bertseks, Constrained Optimization and Lagrange Multiplier Methods, Aca-

demic Press, 1982.
[19] L. Lamberti, C. Pappalettere, Computers and Structures 76 (6) (2000) 713–728.
[20] T.-Y. Chen, International Journal for Numerical Methods in Engineering 36

(1993) 2661–2679.
[21] A. Antoniou, W.-S. Lu, Optimization: Methods, Algorithms, and Applications,

Kluwer Academic, 2003.
[22] P. Boggs, J. Tolle, Acta Numerica 4 (1995) 1–51.
[23] A.I. Forrester, A.J. Keane, Progress in Aerospace Sciences 45 (1–3) (2009)
50–79.
[24] N. Alexandrov, R. Lewis, C. Gumbert, L. Green, P. Newman, AIAA Paper 841

(2000) 254.
[25] G. Wang, Z. Dong, P. Aitchison, Engineering Optimization 33 (2001) 707–733.
[26] J. Rodríguez, J. Renaud, B. Wujek, R. Tappeta, Journal of Computational and

Applied Mathematics 124 (2000) 139–154.



3 wer S
704 M. Secanell et al. / Journal of Po

[27] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P.K. Tucker,
Progress in Aerospace Sciences 41 (1) (2005) 1–28.

[28] F. Schoen, Journal of Global Optimization 1 (3) (1991) 207–228.
[29] L. He, E. Polak, Journal of Global Optimization 3 (1993) 139–156.
[30] M. Dorigo, V. Maniezzo, A. Colorni, IEEE Transactions on Systems, Man and

Cybernetics, Part B 26 (1) (1996) 29–41.
[31] R. Ge, Y. Qin, Journal of Optmization Theory and Applications 54 (2) (1987)

241–252.
[32] E. Hansen, Global Optimization Using Interval Analysis, Dekker, 1992.
[33] D. Golberg, Genetic Algorithms in Search, Optimization, and Machine Learn-

ing, Addison-Wesley, 1989.
[34] Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs,

Springer-Verlag, 1994.
[35] E. Aarts, J. Korst, Simulated Annealing and Boltzman Machines, J. Wiley and

Sons, 1989.
[36] J.G. Lin, IEEE Transactions on Automatic Control 21 (5) (1976) 641–650.
[37] W. Stadler (Ed.), Multicriteria Optimization in Engineering and in the Sciences,

Plenum Press, 1988.
[38] I. Das, Multi-objective optimization, http://www-fp.mcs.anl.gov/otc/Guide/

OptWeb/multiobj.
[39] I. Kim, O. de Weck, Structural and Multidisciplinary Optimization 29 (2005)

149–158.
[40] I. Kim, O. de Weck, Structural and Multidisciplinary Optimization 31 (2006)

105–116.
[41] A. Messac, C.A. Mattson, AIAA Journal 42 (10) (2004) 2101–2111.
[42] I. Das, J. Dennis, SIAM Journal of Optimization 8 (1998) 631–657.
[43] I. Das, J. Dennis, Structural Optimization 14 (1997) 63–69.
[44] M. Secanell, R. Songprakorp, A. Suleman, N. Djilali, Energy and Environmental

Sciences 1 (3) (2008) 378–388.
[45] K. Chen, J. Winnick, V. Manousiouthakis, Computers & Chemical Engineering

30 (8) (2006) 1226–1234.
[46] J. Martins, I. Kroo, J. Alonso, Proceedings of the 38th Aerospace Sciences Meet-

ing and Exhibit, Reno, NV, 2000.
[47] W.K. Anderson, J.C. Newman, D.L. Whitfield, E.J. Nielsen, AIAA Journal 39 (1)

(2001) 56–63.
[48] J.R.R.A. Martins, P. Sturdza, J.J. Alonso, ACM Transactions on Mathematical

Software 29 (3) (2003) 245–262.
[49] J.R.R.A. Martins, P. Sturdza, J.J. Alonso, Proceedings of the 39th Aerospace

Sciences Meeting, Reno, NV, no. AIAA Paper 2001-0921, 2001.
[50] C. Bischof, A. Carle, G. Corliss, A. Griewank, P. Hovland, Scientific Programming

1 (1) (1992) 1–29.
[51] L.L. Sherman, A.C.T. III, L.L. Green, P.A. Newman, G.W. Hou, V.M. Korivi, Journal

of Computational Physics 129 (1996) 30–331.
[52] A. Jameson, Journal of Scientific Computing 3 (3) (1988) 233–260.
[53] Z. Zhang, X. Wang, X. Zhang, F. Yu, ASME Journal of Fuel Cell Science and

Technology 5 (2008) 031007.
[54] M. Grujicic, K. Chittajallu, Applied Surface Science 227 (2004) 56–72.
[55] M. Grujicic, C. Zhao, K. Chittajallu, J. Ochterbeck, Materials Science and Engi-

neering B 108 (2004) 241–252.
[56] M. Grujicic, K. Chittajallu, Chemical Engineering Science 59 (2004)

5883–5895.
[57] K.-H. Lin, C.-H. Cheng, C.-Y. Soong, F. Chen, W.-M. Yan, Journal of Power

Sources 162 (2006) 246–254.
[58] C.-H. Cheng, H.-H. Lin, G.-J. Lai, Journal of Power Sources 165 (2007) 803–

813.
[59] C.-H. Huang, J.-W. Lin, Journal of the Electrochemical Society 156 (1) (2009)

B178–B187.
[60] C.-H. Huang, L.-Y. Chen, S. Kim, Journal of Power Sources 187 (2009) 136–147.
[61] X.-D. Wang, Y.-X. Huang, C.-H. Cheng, J.-Y. Jang, D.-J. Lee, W.-M. Yan, A. Su,

Electrochimica Acta 54 (2009) 5522–5530.
[62] X.Q. Xing, K.W. Lum, H.J. Poh, Y.L. Wu, Journal of Power Sources 186 (2009)

10–21.
[63] D. Song, Q. Wang, Z. Liu, T. Navessin, M. Eikerling, S. Holdcroft, Journal of

Power Sources 126 (1–2) (2004) 104–111.
[64] D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, S. Holdcroft, Elec-

trochimica Acta 50 (16–17) (2005) 3359–3374.
[65] S. Kapadia, W. Anderson, L. Elliott, C. Burdyshaw, Journal of Power Sources

166 (2007) 376–385.
[66] S. Kapadia, W. Anderson, Journal of Power Sources 189 (2009) 1074–1082.
[67] B. Carnes, N. Djilali, Journal of Power Sources 144 (1) (2005) 83–93.
[68] M. Secanell, B. Carnes, A. Suleman, N. Djilali, Electrochimica Acta 52 (7) (2007)

2668–2682.
[69] M. Secanell, K. Karan, A. Suleman, N. Djilali, Electrochimica Acta 52 (22) (2007)

6318–6337.
[70] M. Secanell, K. Karan, A. Suleman, N. Djilali, Journal of the Electrochemical

Society 155 (2–5) (2008) B125–B134.

[71] W. Zhang, P. Hu, X. Lai, L. Peng, Journal of Power Sources 194 (2) (2009)

931–940.
[72] J.-Y. Jang, C.H. Cheng, Y.X. Huang, International Journal of Heat and Mass

Transfer 53 (4) (2010) 732–743.
[73] Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, S. Holdcroft, Journal

of the Electrochemical Society 151 (7) (2004) A950–A957.
ources 196 (2011) 3690–3704

[74] Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eiker-
ling, Z. Liu, S. Holdcroft, Journal of the Electrochemical Society 152 (6) (2005)
A1171–A1179.

[75] R. Madhusudana Rao, R. Rengaswamy, Chemical Engineering Research and
Design 84 (A10) (2006) 952–964.

[76] M. Secanell, B. Carnes, A. Suleman, N. Djilali, Proceedings of the III European
Conference on Computational Mechanics, ECCOMAS, 2006.

[77] M. Secanell, R. Songprakorp, A. Suleman, N. Djilali, Structural and Multidisci-
plinary Optimization 40 (2010) 563–583.

[78] M. Eldred, A. Giunta, B. van Bloemen Waanders, J. S.F. Wojtkiewicz, W. Hart, M.
Alleva, Dakota, A Multilevel Parallel Object-oriented Framework for Design
Optimization, Parameter Estimation, Uncertainty Quantification, and Sen-
sitivity Analysis. version 3.0 users manual., Tech. Rep. 2001-3796, Sandia
National Laboratory (2003).

[79] P. Jain, L.T. Biegler, M.S. Jhon, Electrochemical and Solid-State Letters 11 (10)
(2008) B193–B196.

[80] S. Basri, S. Kamarudin, W. Daud, M. Ahmad, International Journal of Hydrogen
Energy 35 (4) (2010) 1759–1768.

[81] E.J. Cramer, J.E. Dennis, P.D. Frank, R.M. Lewis, G.R. Shubin, SIAM Journal of
Optimization 4 (4) (1994) 754–776.

[82] A. Mawardi, F. Yang, R. Pitchumani, Journal of Fuel Cell Science and Technol-
ogy 2 (2) (2005) 121–135.

[83] J. Wu, Q. Liu, H. Fang, Journal of Power Sources 156 (2) (2006) 388–399.
[84] D. Ko, M. Lee, W.-H. Jang, U. Krewer, Journal of Power Sources 180 (1) (2008)

71–83.
[85] W.L.Y.-T. Wu, International Journal of Hydrogen Energy 35 (18) (2010)

9701–9708.
[86] J. Wishart, Z. Dong, M. Secanell, Journal of Power Sources 161 (2) (2006)

1041–1055.
[87] L. Martins, J. Gardolinski, J. Vargas, J. Ordonez, S. Amico, M. Forte, Applied

Thermal Engineering 29 (14–15) (2009) 3036–3048.
[88] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd ed., John Wiley & Sons

Inc., 2002.
[89] M. Krack, M. Secanell, P. Mertiny, J. Ordonez, S. Amico, M. Forte, Structural

and Multidisciplinary Optimization 41 (5) (2010) 779–795.
[90] G. Wang, Z. Dong, Proceedings of the 1999 ASME DETC Conference, Las Vegas,

NV, no. ASME DETC99-DAC-8557, 1999.
[91] I.J.N. Mohamed, Journal of Power Sources 131 (1–2) (2004) 142–146.
[92] D. Bhattacharyya, R. Rengaswamy, Computers and Chemical Engineering 34

(11) (2010) 1789–1802.
[93] L. Elliott, W. Anderson, S. Kapadia, Journal of Fuel Cell Science and Technology

6 (4) (2009) 0410181–0410186.
[94] D. Cheddie, N. Munroe, Journal of Power Sources 147 (1–2) (2005) 72–84.
[95] B. Blunier, A. Miraoui, Proceedings of the 2005 IEEE Vehicle Power and Propul-

sion, Chicago, IL, 2005.
[96] J. Wishart, Z. Dong, M. Secanell, Proceedings of the IDETC/CIE Conference,

Philadelphia, PA, 2006.
[97] R. Mann, J. Amphlett, M. Hooper, H. Jensen, B. Peppley, P.R. Roberge, Journal

of Power Sources 86 (2000) 173–180.
[98] W. Na, B. Gou, Journal of Power Sources 166 (2007) 411–418.
[99] C. Xu, L. Biegler, M. Jhon, American Institute of Chemical Engineers Journal 52

(7) (2006) 2496–2506.
[100] F. Marechal, F. Palazzi, J. Godat, D. Favrat, Fuel Cells 5 (1) (2005) 5–24.
[101] D. Xuan, Z. Li, J. Kim, Y. Kim, Journal of Mechanical Science and Technology

23 (3) (2009) 717–728.
[102] S. Kamarudin, W. Daud, A. Som, M. Takriff, A. Mohammad, Journal of Power

Sources 159 (2006) 1194–1204.
[103] J. Han, M. Kokkolaras, P.Y. Papalambros, Journal of Fuel Cell Science and Tech-

nology 5 (4) (2008) (art. no. 041014).
[104] D. Xue, Z. Dong, Journal of Power Sources 76 (1) (1998) 69–80.
[105] G. Wang, Z. Dong, Transactions of the CSME 24 (1B) (2000) 295–306.
[106] S. Ang, D. Brett, E. Fraga, Journal of Power Sources 195 (2010) 2754–2763.
[107] L. Yong, C. Guangyi, Y. Qingchun, Chinese Journal of Chemical Engineering 14

(3) (2006) 349–356.
[108] K.P.H.S.K. Chudej, SIAM Journal on Applied Mathematics 70 (2) (2009)

621–639.
[109] F. Barratto, U. Diwekar, Journal of Power Sources 139 (2005) 197–204.
[110] F. Palazzi, N. Autissier, F. Marechal, D. Favrat, Applied Thermal Engineering

27 (2007) 2703–2712.
[111] P. Vijay, A.K. Samantaray, A. Mukherjee, Journal of Fuel Cell Science and Tech-

nology 7 (4) (2010) 0410111–0410117.
[112] P.L. Zervas, J.A. Sarimveis, N.C.G. Palyvos, Markatos, Journal of Power Sources

185 (1) (2008) 345–355.
[113] J. Kloess, X. Wang, J. Liu, Z. Shi, L. Guessous, Journal of Power Sources 188

(2009) 132–140.
[114] T. Borrvall, J. Petersson, International Journal for Numerical Methods in Fluids
41 (1) (2003) 77–107.
[115] P. Berg, K. Promislow, J.S. Pierre, J. Stumper, B. Wetton, Journal of the Electro-

chemical Society 151 (3) (2004) A341–A353.
[116] Q. Guo, V.A. Sethuraman, R.E. White, Journal of the Electrochemical Society

151 (7) (2004) A983–A993.
[117] P. Jain, L.T. Biegler, M.S. Jhon, AIChE Journal 54 (8) (2008) 2089–2100.

http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/multiobj

	Computational design and optimization of fuel cells and fuel cell systems: A review
	Introduction
	Numerical optimization
	Problem formulation
	Nonlinear constraint optimization algorithms
	Multi-objective optimization algorithms
	Sensitivity analysis

	Fuel cell design and optimization
	Low-temperature fuel cells
	Flow field optimization
	Electrode optimization
	Operating conditions optimization
	Stack optimization
	Summary

	High-temperature fuel cells

	Fuel cell systems integration
	Low-temperature fuel cell system optimization
	Operating parameters optimization
	Integer system design optimization
	Physico-chemical optimization
	Summary

	High-temperature fuel cell system optimization
	Summary


	Conclusions
	Acknowledgments
	References


